题目内容
【题目】如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.
(1)若点B与点C关于直线x=1对称,求b的值;
(2)若OB=OA,求△BCP的面积;
(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.
【答案】(1)2(2)(3)h存在最小值,最小值为1
【解析】
(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;
(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;
(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.
解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,
∴﹣=1,
解得:b=2.
(2)当x=0时,y=x2﹣bx﹣=﹣,
∴点A的坐标为(0,﹣).
又∵OB=OA,
∴点B的坐标为(﹣,0).
将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,
解得:b=,
∴抛物线的解析式为y=x2﹣x﹣.
∵y=x2﹣x﹣=(x﹣)2﹣,
∴点P的坐标为(,﹣).
当y=0时,x2﹣x﹣=0,
解得:x1=﹣,x2=1,
∴点C的坐标为(1,0).
∴S△BCP=×[1﹣(﹣)]×|﹣|=.
(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.
当≥1,即b≥2时,如图1所示,
y最大=b+,y最小=﹣b+,
∴h=2b;
当0≤<1,即0≤b<2时,如图2所示,
y最大=b+,y最小=﹣﹣,
∴h=1+b+=(1+)2;
当﹣1<<0,﹣2<b<0时,如图3所示
y最大=﹣b,y最小=﹣﹣,
∴h=1﹣b+=(1﹣)2;
当≤﹣1,即b≤﹣2时,如图4所示,
y最大=﹣b+,y最小=b+,
h=﹣2b.
综上所述:h=,h存在最小值,最小值为1.