题目内容
【题目】已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:
(1)△ABD≌△CFD;
(2)BE⊥AC.
【答案】(1)证明见解析;(2) 证明见解析.
【解析】
试题(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.
试题解析:(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
又∵∠ACB=45°,
∴∠DAC=45°,
∴∠ACB=∠DAC,
∴AD=CD,
在△ABD和△CFD中,∠BAD=∠FCD, AD=CD∠ADB=∠FDC,
∴△ABD≌△CFD;
(2)∵△ABD≌△CFD,
∴BD=FD,
∴∠1=∠2,
又∵∠FDB=90°,
∴∠1=∠2=45°,
又∵∠ACD=45°,
∴△BEC中,∠BEC=90°,
∴BE⊥AC.
练习册系列答案
相关题目