题目内容
【题目】如图,平行四边形ABCD,点F是BC上的一点,连接AF,∠FAD=60°,AE平分∠FAD,交CD于点E,且点E是CD的中点,连接EF,已知AD=5,CF=3,则EF=_____.
【答案】4
【解析】
延长AE、BC交于点G,判定△ADE≌△GCE,即可得CG=AD=5,AE=GE,再根据三线合一可得到FE⊥AG,进而得出Rt△AEF中,EF=AF=4.
解:如图所示;延长AE、BC交于点G,
∵点E是CD的中点,
∴DE=CE,
∵平行四边形ABCD中,AD∥BC,
∴∠D=∠ECG,
又∠AED=∠GED,
∴△ADE≌△GCE,
∴CG=AD=5,AE=GE,
又∵AE平分∠FAD,AD∥BC,
∴∠FAE=∠DAE=∠G=∠DAF=30°,
∴AF=GF=3+5=8,
又∵E是AG的中点,
∴FE⊥AG,
∴Rt△AEF中,EF=AF=4.
故答案为:4
练习册系列答案
相关题目
【题目】某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:
每人销售件数 | 1800 | 510 | 250 | 210 | 150 | 120 |
人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销人员该月销售量的平均数、中位数和众数.
(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.