题目内容
【题目】如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数( )
A.35°
B.5°
C.15°
D.25°
【答案】B
【解析】解:∵∠B=50°,∠C=60°, ∴∠BAC=180°﹣∠B﹣∠C=70°,
∵AE是∠BAC的角平分线,
∴∠EAC= ∠BAC=35°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=90°﹣∠C=30°,
∴∠EAD=∠EAC﹣∠DAC=5°.
故选B.
【考点精析】根据题目的已知条件,利用角的平分线和三角形的内角和外角的相关知识可以得到问题的答案,需要掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.
【题目】某校师生为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制如下统计表:
零花钱数额/元 | 5 | 10 | 15 | 20 |
学生人数/名 | a | 15 | 20 | 5 |
根据表格中信息,回答下列问题:
(1)求a的值.
(2)求着50名学生每人一周内零花钱数额的中位数.
(3)随机抽查一名学生,抽到一周内零花钱数额不大于10元的同学概率为多少?
【题目】甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
班级 | 参赛人数 | 中位数 | 方差 | 平均数 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
某同学分析上表后得出如下结论:
①甲、乙两班学生成绩平均水平相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班大,
上述结论正确的是( )
A.①②③
B.①②
C.①③
D.②③