题目内容

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

【答案】(1)y=﹣x2+2x+3(2)()(3)当点P的坐标为()时,四边形ACPB的最大面积值为

【解析】

(1)根据待定系数法,可得函数解析式;

(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;

(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.

(1)将点B和点C的坐标代入函数解析式,得

解得

二次函数的解析式为y=﹣x2+2x+3;

(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,

如图1,连接PP′,则PECO,垂足为E,

C(0,3),

∴点P的纵坐标

时,即

解得(不合题意,舍),

∴点P的坐标为

(3)如图2,

P在抛物线上,设P(m,﹣m2+2m+3),

设直线BC的解析式为y=kx+b,

将点B和点C的坐标代入函数解析式,得

解得

直线BC的解析为y=﹣x+3,

设点Q的坐标为(m,﹣m+3),

PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.

y=0时,﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

OA=1,

S四边形ABPC=SABC+SPCQ+SPBQ

m=时,四边形ABPC的面积最大.

m=时,,即P点的坐标为

当点P的坐标为时,四边形ACPB的最大面积值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网