题目内容
【题目】把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( )
A.(45,77)
B.(45,39)
C.(32,46)
D.(32,23)
【答案】C
【解析】解:2013是第 =1007个数,
设2013在第n组,则1+3+5+7+…+(2n﹣1)≥1007,
即 ≥1007,
解得:n≥31.7,
当n=31时,1+3+5+7+…+61=961;
当n=32时,1+3+5+7+…+63=1024;
故第1007个数在第32组,
第1024个数为:2×1024﹣1=2047,
第32组的第一个数为:2×962﹣1=1923,
则2013是( +1)=46个数.
故A2013=(32,46).
故选:C.
先计算出2013是第几个数,然后判断第1007个数在第几组,再判断是这一组的第几个数即可.
练习册系列答案
相关题目
【题目】某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售量 | 销售收入 | |
A型号 | B型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(1)求A、B两种型号的电风扇的销售价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.