题目内容
【题目】如图,在△ABC中,D,E是BC边上的两点,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠CAD的度数为( )
A. 50° B. 60° C. 70° D. 110°
【答案】B
【解析】
运用SAS证明△ABD≌△ACE,得∠B=∠C.根据三角形内角和定理可求∠DAE的度数.则易求∠CAE的度数,从而可得结论.
如图,
∵∠1=∠2=110°,
∴∠ADE=∠AED=70°,
∴∠DAE=180°-2×70°=40°.
∵BE=CD,
∴BD=CE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS)
∴∠BAD=∠CAE.
∵∠BAE=60°,
∴∠BAD=∠CAE=20°.
∴∠CAD=40°+20°=60°.
故选B.
练习册系列答案
相关题目
【题目】为了传承优秀传统文化,我市组织了一次初三年级1 200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:
成绩(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人数 | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成绩分组 | 频数 | 频率(百分比) |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
请根据所提供的信息解答下列问题:
(1)频率统计表中a=________,b=_______;
(2)请补全频数分布直方图;
(3)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?