题目内容
【题目】著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”
阅读下列两则材料,回答问题
材料一:平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何将双重二次根式(a>0,b>0,a±2>0)化简呢?如能找到两个数m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即mn=b,那么a±2=()2+()2±2=(2
∴==|,双重二次根式得以化简.
例如化简:.∵3=1+2且2=1×2,∴3+2=()2+()2+2,
∴==1+.
材料二:在直角坐标系xoy中,对于点P(x,y)和Q(x,y′)出如下定义:若y′=,则称点Q为点P的“横负纵变点”例如,点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5)
问题:
(1)请直接写出点(﹣3,﹣2)的“横负纵变点”为 ;化简= ;
(2)点M为一次函数y=﹣x+1图象上的点,M′为点M的横负纵变点,已知N(1,1),若M′N=,求点M的坐标;
(3)已知b为常数且1≤b≤2,点P在函数y=﹣x2+16(+)(﹣7≤x≤a)的图象上,其“横负纵变点”的纵坐标y′的取值范围是﹣32<y′≤32,若a为偶数,求a的值.
【答案】(1)(﹣3,2);﹣;(2)当a≥0时,M'(3,﹣2);当a<0时,M'(﹣1,﹣2);(3)a=4或a=6
【解析】
(1)﹣3<0,得到(﹣3,﹣2)的“横负纵变点”为(﹣3,2);==﹣;
(2)设点M(a,1﹣a),当a≥0时,M'(a,1﹣a),M'(3,﹣2);当a<0时,M'(a,a﹣1),M'(﹣1,﹣2);
(3)=+1+1﹣=2,令y'=,当﹣7≤x<0时,﹣32<y'≤17,当x≥0时,y'≤32,即可求出a.
解:(1)∵﹣3<0,根据“横负纵变点”的定义,
∴(﹣3,﹣2)的“横负纵变点”为(﹣3,2);
==﹣;
故答案为:(﹣3,2);﹣;
(2)设点M(a,1﹣a),
当a≥0时,M'(a,1﹣a),
∵N(1,1),M′N=,
∴(1﹣a)2+a2=13,
∴a=3或a=﹣2(舍),
∴M'(3,﹣2);
当a<0时,M'(a,a﹣1),
∵N(1,1),M′N=,
∴(1﹣a)2+(2﹣a)2=13,
∴a=﹣1或a=4(舍),
∴M'(﹣1,﹣2);
(3)∵1≤b≤2,∴0≤b﹣1≤1,
∵=+1+1﹣=2,
∴y=﹣x2+32,
∴y'=,
当﹣7≤x<0时,﹣32<y'≤17;
当x≥0时,y'≤32;
令﹣x2+32=17,解得x1=或x2=﹣(舍);
令﹣x2+32=﹣32,解得x1=8或x2=﹣8(舍);
∴≤a<8,
∵a是偶数,
∴a=4或a=6.
【题目】参照学习函数的过程与方法,探究函数的图象与性质.因为,即,所以我们对比函数来探究.
列表:
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请补全函数图象;
(2)观察图象并分析表格,回答下列问题:
①当时,随的增大而_________;(填“增大”或“减小”)
②的图象是由的图象向________平移________个单位而得到;
③图象关于点_________中心对称.(填点的坐标)
(3)结合函数图象,当时,求的取值范围.