题目内容

【题目】如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.
(1)求证:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.

【答案】
(1)证明:∵BE⊥AC,DF⊥AC,

∴∠AFD=∠CEB=90°.

∵AE=FC,

∴AE+EF=FC+EF,

∴AF=CE,

又∵BE=DF,

∴△AFD≌△CEB;


(2)证明:四边形ABCD为矩形.

∵△AFD≌△CEB,

∴AD=BC,∠BCE=∠DAF.

∴AD∥BC,

∴四边形ABCD为平行四边形,

∵∠CBE=∠BAC,

又∵∠CBE+∠ACB=90°,

∴∠BAC+∠ACB=90°,

∴∠ABC=90°,

∴四边形ABCD为矩形.


【解析】(1)求出AF=CE,再利用“边角边”证明即可;(2)根据全等三角形对应边相等可得AD=BC,全等三角形对应角相等可得∠BCE=∠DAF,再根据内错角相等,两直线平行证明AD∥BC,然后判断出四边形ABCD是平行四边形,求出∠ABC=90°,最后根据有一个角是直角的平行四边形是矩形证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网