题目内容
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC;
(2)已知AC=15,BE=3,求AB的长.
【答案】(1)、证明过程见解析;(2)、9.
【解析】
试题分析:(1)、求出∠E=∠DFC=90°,根据HL推理Rt△BED≌Rt△CFD,根据全等三角形的性质得出DE=DF,根据角平分线性质得出即可;(2)、根据全等三角形的判定得出Rt△AED≌Rt△AFD,根据全等三角形的性质得出AE=AF,即可得出答案.
试题解析:(1)、∵DE⊥AB,DF⊥AC, ∴∠E=∠DFC=90°, 在Rt△BED和Rt△CFD中
∴Rt△BED≌Rt△CFD(HL), ∴DE=DF, ∵DE=DF,DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)、解:∵DE⊥AB,DF⊥AC, ∴∠E=∠DFA=90°, 在Rt△AED和Rt△AFD中
∴Rt△AED≌Rt△AFD(HL), ∴AE=AF, ∵Rt△BED≌Rt△CFD,
∴CF=BE, ∵AC=15,BE=3, ∴AB=AE﹣BE=AF﹣CF=AC﹣CF﹣CF=15﹣3﹣3=9.
练习册系列答案
相关题目