题目内容
【题目】如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,若AC=6,则DE的长为( )
A. 3 B. 3 C. 2 D. 4
【答案】A
【解析】
根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.
解:∵E为AB的中点,DE⊥AB,
∴AD=DB,
∵四边形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD为等边三角形.
∵四边形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×6=3,
由上可知DE和AO都是等边△ABD的高,
∴DE=AO=3.
故选:A.
练习册系列答案
相关题目