题目内容

【题目】图a.图b均为边长等于1的正方形组成的网格.
(1)在图a空白的方格中,画出阴影部分的图形沿虚线AB翻折后的图形,并算出原来阴影部分的面积.(直接写出答案)
(2)在图b空白的方格中,画出阴影部分的图形向右平移2个单位,再向上平移1个单位后的图形,并判断原来阴影部分的图形是什么三角形?(直接写出答案)

【答案】
(1)解:如图a所示:阴影部分的面积为:2×3﹣ ×2×2﹣ ×1×3﹣ ×1×1=2;


(2)解:如图b所示:阴影部分是等腰直角三角形
【解析】(1)直接利用轴对称图形的性质得出答案,再利用三角形所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出答案,再利用勾股定理逆定理可得出答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对勾股定理的逆定理的理解,了解如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网