题目内容
【题目】问题背景:在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.
例如:在图1中,当AB=AD时,可证得AB=DC,现在继续探索:
任务要求:
(1)当AD⊥BC时,如图2,求证:AB+BD=DC;
(2)当AD是∠BAC的角平分线时,判断AB、BD、AC的数量关系,并证明你的结论。
【答案】(1)证明见详解;
(2)AB+BD=AC.
【解析】
(1)作辅助线“在DC上截取DM=BD,连接AM”构建全等三角形△ABD≌△AMD,然后由全等三角形的对应角相等以及等腰三角形的性质证得∠B=∠AMB;再由已知条件、三角形外角定理求得∠C=∠MAC,所以AM=MC;最后根据等量代换求得MC=AB,即AB+BD=DC;
(2)延长AB到M,使BM=BD,连接MD.∠ABD=∠M+∠BDM=2∠M.由∠ABD=2∠C,得∠M=∠C.再证△AMD≌△ACD,可得结论AB+BD=AC.
解:
(1)在DC上截取DM=BD,连接AM.
在△ABD与△AMD中,
,
∴△ABD≌△AMD(SAS),
∴AB=AM,
∴∠B=∠AMB.
∵∠AMD=∠MAC+∠C,∠B=2∠C,
∴∠C=∠MAC,
∴AM=MC,
∴MC=AB,
则AB+BD=DC;
(2)
如图示,延长AB到M,使BM=BD,连接MD.
∴∠ABD=∠M+∠BDM=2∠M.
∵∠ABD=2∠C,
∴∠M=∠C.
又∵AD是∠BAC的角平分线,
∴∠BAD=∠CAD,
AD=AD(公共边)
∴△AMD≌△ACD(AAS).
∴AM=AC,
∴AB+BD=AC.
练习册系列答案
相关题目