题目内容
【题目】矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
【答案】(1)(4,3);(2)y=x+x;(3)
【解析】
(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;
(2)直接将点A、D的坐标代入抛物线解析式即可;
(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.
解:(1)设D的横坐标为x,则根据题意有3=x,则x=4
∴D点坐标为(4,3)
(2)将A(6,0),D(4,3)代入y=ax+bx中,得
解得:
∴此抛物线的表达式为:y=x+x;
(3)由于△POA底边为OA=6,
∴当P为抛物线顶点时,△POA面积最大
∴
∴
∴的最大值为
【题目】甲、已两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按折出售,乙商场对一次购物中超过200元后的价格部分打折. 设原价购物金额累计为元().
根据题意,填写下表: (单位:元)
原价购物金额累计/元. | 130 | 300 | 700 | ··· |
甲商场实际购物金额/元 | 104 | 560 | ··· | |
乙商场实际购物金额/元 | 130 | 270 | ··· |
设在甲商场实际购物金额为元,在乙商场实际购物金额为元,分别写出,关于的函数解析式;
根据题意填空:
①若在同甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为______元 ;
②若在同一商场购物,商品原价购物金额累计为 元,则在甲、乙.两家商场中的 商场实际购物花费金少.
③若在同一商场实际购物金额为元,则在甲、乙两家商场中的_____商场商品原价购物累计金额多.