题目内容
【题目】如图,在等腰直角中,,,D是AB上一个动点,以DC为斜边作等腰直角,使点E和A位于CD两侧。点D从点A到点B的运动过程中,周长的最小值是________.
【答案】
【解析】
根据勾股定理得到DE=CE=CD,求得△DCE周长=CD+CE+DE=(1+)CD,当CD的值最小时,△DCE周长的值最小,当CD⊥AB时,CD的值最小,根据等腰直角三角形的性质即可得到结论.
解:∵△DCE是等腰直角三角形,
∴DE=CE=CD,
∴△DCE周长=CD+CE+DE=(1+)CD,
当CD的值最小时,△DCE周长的值最小,
∴当CD⊥AB时,CD的值最小,
∵在等腰直角△ABC中,∠ACB=90°,BC=2,
∴AB=BC=2,
∴CD=AB=,
∴△DCE周长的最小值是2+,
故答案为:2+.
练习册系列答案
相关题目