题目内容

【题目】如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.

【答案】解:(1)连接AO、DO.设⊙O的半径为r.
在Rt△ABC中,由勾股定理得AC==4,
则⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;
∵CE、CF是⊙O的切线,∠ACB=90°,
∴∠CFO=∠FCE=∠CEO=90°,CF=CE,
∴四边形CEOF是正方形,
∴CF=OF=1;
又∵AD、AF是⊙O的切线,
∴AF=AD;
∴AF=AC﹣CF=AC﹣OF=4﹣1=3,
即AD=3;
(2)点P在线段AC上时.
在Rt△ABC中,AB=5,AC=4,BC=3,
∵∠C=90°,PH⊥AB,
∴∠C=∠PHA=90°,
∵∠A=∠A,
∴△AHP∽△ACB,


∴y=﹣x+4,
即y与x的函数关系式是y=﹣x+4.

【解析】(1)由勾股定理求AC的长度;设⊙O的半径为r,则r=(AC+BC﹣AB);根据圆的切线定理、正方形的判定定理知四边形CEOF是正方形;然后由正方形的性质证得CF=OF=1,则由图中线段间的和差关系即可求得AD的长度;
(2)点P在线段AC上时,通过相似三角形△AHP∽△ACB的对应边成比例知, , 将“PH=x,PC=y”代入求出即可求得y关于x的函数关系式即可.
【考点精析】通过灵活运用三角形的内切圆与内心,掌握三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网