题目内容
【题目】在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:
(1)当运动开始后1秒时,求△DPQ的面积;
(2)当运动开始后秒时,试判断△DPQ的形状;
(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.
【答案】(1)S△DPQ=30(cm2);(2)△DPQ为直角三角形;(3)运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.
【解析】
(1)根据运动时间求出AP,BQ,利用分割法求△DPQ的面积即可.
(2)分别求出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;
(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.
解:(1)经过1秒时,AP=1,BQ=2,
∵四边形ABCD是矩形,
∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,
∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),
∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).
(2)当t=秒时,
AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,
∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,
在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,
在Rt△QBP中,QP2=QB2+BP2=32+()2=,
∴DQ2+QP2=117+=,
∴DQ2+QP2=DP2,
∴△DPQ为直角三角形;
(3)假设运动开始后第x秒时,满足条件,则:QP=QD,
∵QP2=PB2+BQ2=(6﹣x)2+(2x)2,
QD2=QC2+CD2=(12﹣2x)2+62,
∴(12﹣2x)2+62=(6﹣x)2+(2x)2,
整理,得:x2+36x﹣144=0,
解得:x=﹣18±6,
∵0<6﹣18<6,
∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.
【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | 4.5 | 6 |
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.