题目内容

已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
(1)当时, 函数为:;当时, 函数为:;当,y=0.
(2) 乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式为:y=40x.
(3) 它们在行驶的过程中相遇的时间为:.
根据分段函数图像写出分段函数.
试题分析:(1)当时甲的函数图像过点(0,0)和(3,300),此时函数为:,当x=3时甲到达B地,当时过点(3,300)和点,设此时函数为,则可得到方程组:,解得时函数为:,当,y=0.
(2)由图知乙的函数图像过点(0,0),设它的函数图像为:y="mx," ∵当它们行驶到与各自出发地的距离相等时,用了小时,∴,解得:m=40,∴乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式为:y=40x.
(3)当它们在行驶的过程中,甲乙相遇两次即甲从A向B行驶的过程中相遇一次()和甲从B返回A的过程中相遇一次(),∴当时,有;当,有,∴它们在行驶的过程中相遇的时间为:.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网