题目内容

【题目】如图,点A,O,E在同一条直线上,BOD= 90°,OD是∠COE的角平分线,找出图中与∠DOE互余的角.甲、乙、丙三个同学的答案如下:

:只有一个角,是∠AOB:

:有两个角,是∠AOB和∠BOC:

:有三个角,是∠AOB,BOC,COD.

(1)请你判断哪个同学的答案是正确的?

(2)请你说明正确答案的理由.

【答案】1)乙同学的答案是正确的;(2)理由见解析.

【解析】

1)根据平角的定义和已知条件即可得∠AOB+DOE=90°,∠COD+∠BOC=90°,根据角平分线的定义,可得:∠COD=DOE,从而得出∠DOE+∠BOC=90°,但是没有∠COD=90°这个条件,故∠DOE与∠COD不一定互余,即可得出结论;

2)根据平角的定义和已知条件即可得∠AOB+DOE=90°,∠COD+∠BOC=90°,根据角平分线的定义,可得:∠COD=DOE,从而得出∠DOE+∠BOC=90°,但是没有∠COD=90°这个条件,故∠DOE与∠COD不一定互余,即可得出结论.

解:(1)∵∠AOE=180°,∠BOD= 90°,

∴∠AOB+DOE=AOE-∠BOD=90°,∠COD+∠BOC=90°

OD是∠COE的角平分线,

∴∠COD=DOE

∴∠DOE+∠BOC=90°

∵∠COD不一定等于90°

∴∠DOE与∠COD不一定互余,

∴与∠DOE互余的角有两个角,是∠AOB和∠BOC

故乙同学的答案是正确的;

2)∵∠AOE=180°,∠BOD= 90°,

∴∠AOB+DOE=AOE-∠BOD=90°,∠COD+∠BOC=90°

OD是∠COE的角平分线,

∴∠COD=DOE

∴∠DOE+∠BOC=90°

∵∠COD不一定等于90°

∴∠DOE与∠COD不一定互余,

∴与∠DOE互余的角有两个角,是∠AOB和∠BOC

故乙同学的答案是正确的;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网