题目内容
(1)计算:﹣4sin30°+(2014﹣π)0﹣22 . (2)解不等式组: .
在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,线段BE的长为____________.
如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为6,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找一格点E,使△ABE为直角三角形,求出所有满足条件的线段AE的长度.
(3)求sin∠BAC的值.
如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为( )
A. 2cm3 B. 4cm3 C. 6cm3 D. 8cm3
如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DE⊥AC,连结OD,若AB=10,AC=6,求DE的长.
已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是________.
小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的( )
A. 众数 B. 方差 C. 平均数 D. 频数
若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是__cm.
(2017山东省泰安市,第26题,8分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?