题目内容
【题目】(本题满分7分)如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.
【答案】.
【解析】
试题分析:先由SSS证明△ADE≌△ADF,得出∠DAE=∠DAF,即AD平分∠BAC,再由等腰三角形的三线合一性质得出BD=CD=BC=3,AD⊥BC,根据勾股定理求出AB,由直角三角形斜边上的中线性质得出DE=AB,DF=AC,证出AE=AF=DE=DF,即可求出结果.
试题解析:∵点E,F分别是边AB,AC的中点,∴AE=BE=AB,AF=CF=AC,∵AB=AC,∴AE=AF,在△ADE和△ADF中,∵AE=AF,DE=DF,AD=AD,∴△ADE≌△ADF(SSS),∴∠DAE=∠DAF,即AD平分∠BAC,∴BD=CD=BC=3,AD⊥BC,∴∠ADB=∠ADC=90°,∴AB===,∵在Rt△ABD和Rt△ACD中,E,F分别是边AB,AC的中点,∴DE=AB,DF=AC,∴AE=AF=DE=DF,∴四边形AEDF的周长=4AE=2AB=.
练习册系列答案
相关题目