题目内容
【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A. 30 B. 34 C. 36 D. 40
【答案】B
【解析】在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可
解: ∵四边形ABCD是正方形, AE=BF=CG=DH, ∴AH=DG=CF=BE,
∴△AEH≌△DHG≌△CGF≌△BFE(SAS),
∴EH=EF=FG=HG,∵∠A=∠D=90°,
∴∠DGH+∠DHG=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=180°-90°=90°,
∴四边形EFGH是正方形,
在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,
∵四边形EFGH是正方形,
∴EF=FG=GH=EH=,
∴四边形EFGH的面积是()2=34.
故选B.
“点睛”本题考查了正方形性质,全等三角形的性质和判定,三角形内角和定理,正方形判定的应用,关键是推出四边形EFGH是正方形.
练习册系列答案
相关题目
【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:
A | B | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 400 | 280 |
红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
车辆数(辆) | 载客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保证租车费用不超过1900元,求x的最大值;
(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.