题目内容
【题目】如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线经过C、B两点,与x轴的另一交点为D.
(1)点B的坐标为( , ),抛物线的表达式为 .
(2)如图2,求证:BD//AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.
【答案】(1)(6,2)(2)见解析(3)8
【解析】
解:(1)过点B作BE⊥x轴于点E,
∵AC⊥BC,
∴∠ACO+∠BCE=90°,
∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,
∴∠OAC=∠BCE,∠ACO=∠CBE.
∵在△AOC与△CEB中,
∴△AOC≌△CEB(AAS),则
CE=AO=4, BE=CO=2,OE=6,
∴B(6,2).
将B(6,2),C(2,0)代入,得
,解得.
∴抛物线的表达式为.
(2)证明:令,即,解得x=2或x=7.
∴D(7,0).
如下图所示,过点B作BE⊥x轴于点E,
则DE=OD-OE=1,CD=OD-OC=5.
在Rt△BDE中,由勾股定理得:;
在Rt△BCE中,由勾股定理得:
在△BCD中,BC =,BD=,CD=5.
∴.
∴∠CBD=90°,即BD⊥BC.
又∵ AC⊥BC,∴BD//AC.
(3)连接AB,BP,
∵AC⊥BC,BC=AC=,
∴∠ACB=90°,∠ABC=45°,∠APB=∠ACB=45°,AB=.
∴∠ABQ=∠APB.
又∵∠BAQ=∠PAB,∴△ABQ∽△APB.
∴,即,解得AP=8.
练习册系列答案
相关题目