题目内容

【题目】如图,已知正方形ABCD的边长为2,以DC为底向正方形外作等腰△DEC,连接AE,以AE为腰作等腰△AEF,使得EA=EF,且∠DEC=∠AEF.

(1)求证:△EDC∽△EAF;

(2)求DE·BF的值;

(3)连接CF、AC,当CF⊥AC时,求∠DEC的度数.

【答案】(1)证明见解析;

(2)DE·BF的值为4;

(3)∠DEC的度数为45°.

【解析】(1)先证两对对应角相等得出△EDC∽△EAF;(2)利用(1)的结论推出两边对应成比例且夹角相等得到△BAF∽△DEA,从而求出DE·BF;(3)

解:(1)∵△AEF和△DEC是等腰三角形,且∠DEC=∠AEF,

∴∠EAF=

∴∠EAF=∠EDC

∴△EDC∽△EAF.

(2)由(1)得△EDC∽△EAF,

∵DC=AB,∴

∵∠DEA=180°-90°-∠EDC-∠DAE=90°-∠EDC-∠DAE,

∠BAF=90°-∠EAF-∠DAE,∴∠BAF=∠DEA

∴△BAF∽△DEA,

.即DE·BF=DA·AB=4.

(另法:记∠DEC=∠AEF=α,

(3)∵DE=CE,AE=FE,∴△ADE≌△FCE

∴AD=FC=BC

∵△BAF∽△DEA,

∴∠ABF=∠EDA , ∴∠FBC=∠CDE

∵△CBF和△EDC是等腰三角形,

∴∠BCF=∠DEC

∵CF⊥AC,∴∠ACF=90°

∵∠ACB=45°,∴∠BCF=45°

∴∠DEC=45°.

“点睛”本题考查相似三角形、等腰三角形的性质、全等三角形的性质、正方形的性质,解题的关键是熟练应用相似三角形性质解决问题,解题时要注意小题间的联系,有一定难度,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网