题目内容
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )
A. 6B. 5C. 4D. 8
【答案】A
【解析】
根据∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥AD于E,于是得到∠ACE+∠CAE=90°,根据余角的性质得到∠BAD=∠ACE,推出△ABD≌△ACE,根据全等三角形的性质即可得到结论.
∵∠BAC=90°,AB=AC,
∴∠BAD+∠CAD=90°,
∵CE⊥AD于E,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD与△ACE中,
,
∴△ABD≌△ACE,
∴AE=BD=4,AD=CE=10,
∴DE=AD-AE=6.
故选A.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某商场设立了一个可以自由旋转的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组落在奖品“铅笔”区域的统计数据:
转动转盘的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数 | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的成功率 |
(1).计算并完成表格(精确到0.01);
(2).请估计,当很大时,落在“铅笔”区域的频率将会接近______(精确到0.1).
(3).假如你去转动该转盘一次,你获得铅笔的成功率约是______.