题目内容

【题目】阅读、操作与探究:

小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:

如图1,RtABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为

请仿照小亮的方法解决下列问题:

(1)如图2,已知RtFGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;

(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为

【答案】1、1:2;2:3;2、n:n+1.

【解析】

试题分析:1、根据题意中的画法得出矩形的邻边之比;根据题意画出图形得出比值;2、根据直角三角形的三边长进行化简,得出比值.

试题解析:11:2;

2:3;

2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网