题目内容
【题目】如图,已知AB是⊙O的直径,AD、BD是半圆的弦,∠PDA=∠PBD,∠BDE=60°,若PD= ,则PA的长为 .
【答案】1
【解析】解:∵AB为直径,
∴∠ADB=90°,
∵∠BDE=60°,
∴∠PDA=180°﹣90°﹣60°=30°,
∴∠PBD=∠PDA=30°,
∵OB=OD,
∴∠ODB=∠PBD=30°,
∴∠ADO=60°,
∴△ADO为等边三角形,∠ODP=90°,
∴AD=OA,∠AOD=60°,PD为⊙O的切线,
∴∠P=30°,
∴PA=AD,PD2=PAPB,
∴ =PA3PA
∴PA=1;
所以答案是:1.
【考点精析】本题主要考查了圆周角定理和切线的性质定理的相关知识点,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
练习册系列答案
相关题目
【题目】已知函数,它的图象犹如老师的打钩,因此人们称它为对钩函数(的一支).下表是与的几组对应值:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
请你根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行探究.
(1)如图,在平面直角坐标系中,已描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;
(2)请根据图象写出该函数的一条性质: .
(3)当时,的取值范围为 ,则的取值范围为 .