题目内容
【题目】阅读理解题
定义:如果四边形的某条对角线平分一组角,那么把这条对角线叫“美妙线”,该四边形叫做“美妙四边形”.
如图:在四边形ABCD中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABCD就称为“美妙四边形”.
问题:(1)下列四边形中是“美妙四边形”的有_______个.
①平行四边形 ②矩形 ③菱形 ④正方形
A.1 B. 2 C. 3 D.4
(2)四边形ABCD是“美妙四边形”,AB=3+,∠BAD=60°,∠ABC=90°,求四边形ABCD的面积.
(3)如图,若△ABC中,AB=3,BC=4,∠B=90°,将△ABC扩充成以AC为“美妙线”的“美妙四边形”ABCD,试求D到BC的距离.
【答案】(1)B;(2)①S=②S=;(3)
【解析】
(1)根据“美妙四边形”的定义,结合平行四边形,矩形,菱形 ,正方形的性质即可判断.
(2)分①当AC是美妙线时和②当BD是美妙线时,两种情况进行讨论.
(3)如图,过D作MN∥BC交BA延长线于点M且CN⊥MN,证明△MDA∽△NCD
根据相似三角形的性质得到设AM=3x,则DN=4x,MD=4-4x,CN=3x+3,得到,解方程求出的值,即可求解.
.解:(1)菱形和正方形是“美妙四边形”.
故答案为:B
(2)①当AC是美妙线时,如图
AB=3+,∠BAD=60°,
,
,
②当BD是美妙线时,如图,过D作DH⊥AB,
设AH=a,则
∴
∴
∴DH=3,
,
综上所述:S=或
(3)如图,过D作MN∥BC交BA延长线于点M且CN⊥MN
由题意,得∠M=∠N=90°
∠MDA+∠MAD=90°
∠MDA+∠CDN=90°
∴∠MAD=∠CDN
∴△MDA∽△NCD
设AM=3x,则DN=4x,MD=4-4x,CN=3x+3
∴x=,
∴DH=3x+3=
【题目】某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费4元;方式二:不购买会员证,每次游泳付费10元.设小明计划今年夏季游泳次数为x(x为正整数).
(1)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 140 | 160 | _______ | … | _______ |
方式二的总费用(元) | 100 | 150 | ________ | … | ________ |
(2)若小明计划今年夏季游泳的总费用为260元,选择哪种付费方式,他游泳的次数比较多?
(3)小明选择哪种付费方式更合算?并说明理由.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?