题目内容
【题目】如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,求BF的长(计算结果可含根号)
【答案】(1)证明见解析;(2);(3).
【解析】
(1)根据题意可求得:∠AFB=∠D,∠BAF=∠AED,由如果两个三角形的两个对应角相等,那么这两个三角形相似,可证得△ABF∽△EAD;
(2)由直角三角形的性质,即可求得;
(3)根据相似三角形的对应边成比例,求得.
(1)证明:∵AD∥BC,
∴∠C+∠ADE=180°.
∵∠BFE=∠C,
∴∠AFB=∠EDA.
∵AB∥DC,
∴∠BAE=∠AED.
∴△ABF∽△EAD.
(2)∵AB∥CD,BE⊥CD,
∴∠ABE=90°,
∵AB=4,∠BAE=30°,
(3)
即
练习册系列答案
相关题目