题目内容
【题目】如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD与AB之间的距离;
(2)某人从车站A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.
(参考数据:sin67°≈,cos67°≈
,tan67°≈
,sin37°≈
,cos37°≈
,tan37°≈
)
【答案】(1)CD与AB之间的距离约为24米;(2)多走约24米.
【解析】
试题分析:(1)设CD与AB之间的距离为x,则在Rt△BCF和Rt△ADE中分别用x表示BF,AE,又AB=AE+EF+FB,代入即可求得x的值;
(2)在Rt△BCF和Rt△ADE中,分别求出BC、AD的长度,求出AD+DC+CB-AB的值即可求解.
试题解析:(1)CD与AB之间的距离为x,
则在Rt△BCF和Rt△ADE中,
∵=tan37°,
=tan67°,
∴BF=≈
x,AE=
≈
x,
又∵AB=62,CD=20,
∴x+
x+20=62,
解得:x=24,
答:CD与AB之间的距离约为24米;
(2)在Rt△BCF和Rt△ADE中,
∵BC=≈
=40,
AD=≈
=26,
∴AD+DC+CB-AB=40+20+26-62=24(米),
答:他沿折线A→D→C→B到达超市比直接横穿马路多走约24米.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目