题目内容

如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.
(1)在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;
(2)在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);
(3)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.

解:(1)所画的点P在AC上且不是AC的中点和AC的端点,即给.

(2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求(不写文字说明不扣分)给.
(说明:画出的点P大约是四边形ABCD的半等角点,而无对称的画图痕迹,给1分)

(3)连P1A、P1D、P1B、P1C和P2D、P2B,根据题意,
∠AP1D=∠AP1B,∠DP1C=∠BP1C,
∴∠AP1B+∠BP1C=180度.
∴P1在AC上,
同理,P2也在AC上.
在△DP1P2和△BP1P2中,
∠DP2P1=∠BP2P1,∠DP1P2=∠BP1P2,P1P2公共,
∴△DP1P2≌△BP1P2
所以DP1=BP1,DP2=BP2,于是B、D关于AC对称.
设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,
所以点P是四边形的半等角点.
分析:(1)根据题意可知,所画的点P在AC上且不是AC的中点和AC的端点.因为在图形内部,所以不能是AC的端点,又由于α≠β,所以不是AC的中点.
(2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求.(因为对称的两个图形完全重合)
(3)先连P1A、P1D、P1B、P1C和P2D、P2B,根据题意∠AP1D=∠AP1B,∠DP1C=∠BP1C∴∠AP1B+∠BP1C=180度.∴P1在AC上,同理,P2也在AC上,再利用ASA证明△DP1P2≌△BP1P2而,那么△P1DP2和△P1BP2关于P1P2对称,P是对称轴上的点,所以∠DPA=∠BPA,∠DPC=∠BPC.即点P是四边形的半等角点.
点评:通过阅读理解半等角点的概念,再综合运用知识解决问题,本题属于阅读理解题,对知识与能力要求较高.
命题立意:本题考查学生理解知识和综合运用知识的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网