题目内容
【题目】已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是度.
【答案】35
【解析】解:过点E作EF⊥AD, ∵DE平分∠ADC,且E是BC的中点,
∴CE=EB=EF,
又∵∠B=90°,且AE=AE,
∴△ABE≌△AFE,
∴∠EAB=∠EAF.
又∵∠CED=35°,∠C=90°,
∴∠CDE=90°﹣35°=55°,
∴∠CDA=110°,
∵∠B=∠C=90°,
∴DC∥AB,
∴∠CDA+∠DAB=180°,
∴∠DAB=70°,
∴∠EAB=35°.
所以答案是:35.
【考点精析】掌握角平分线的性质定理是解答本题的根本,需要知道定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.
练习册系列答案
相关题目