题目内容
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是( )
A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为
【答案】C
【解析】
根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠EAF=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF的长,再一一计算即可判断.
解:∵四边形ABCD是正方形,
∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,
∴OD=OB=OA=,∠ABF=∠ADE=135°,
在Rt△AEO中,EO=,
∴DE=,故A错误.
∵∠EAF=135°,∠BAD=90°,
∴∠BAF+∠DAE=45°,
∵∠ADO=∠DAE+∠AED=45°,
∴∠BAF=∠AED,
∴△ABF∽△EDA,
∴,
∴,
AF=,故C正确,
OF=
tan∠AFO=,故B错误,
∴S四边形AECF=ACEF=××=,故D错误,
故选:C.
练习册系列答案
相关题目