题目内容
【题目】已知等腰△ABC中,AD垂直于直线BC,垂足为点D,且AD=BC,则△ABC底角的度数为( )
A. 45° B. 75° C. 45°或75°或15° D. 60°
【答案】C
【解析】
分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.
①如图1,当AB=AC时,
∵AD⊥BC,∴BD=CD,
∵AD=BC,∴AD=BD=CD,∴底角为45°;
②如图2,当AB=BC时,
∵AD=BC,∴AD=AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.
③如图3,当AB=BC时,
∵AD=BC,AB=BC,∴AD=AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;
∴△ABC底角的度数为45°或75°或15°.
故选C.
练习册系列答案
相关题目