题目内容

【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).

【答案】
(1)证明:∵⊙O切BC于D,

∴OD⊥BC,

∵AC⊥BC,

∴AC∥OD,

∴∠CAD=∠ADO,

∵OA=OD,

∴∠OAD=∠ADO,

∴∠OAD=∠CAD,

即AD平分∠CAB


(2)设EO与AD交于点M,连接ED.

∵∠BAC=60°,OA=OE,

∴△AEO是等边三角形,

∴AE=OA,∠AOE=60°,

∴AE=AO=OD,

又由(1)知,AC∥OD即AE∥OD,

∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,

∴SAEM=SDMO

∴S阴影=S扇形EOD= =


【解析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网