题目内容

【题目】如图,点P关于OAOB的对称点分别为HG,直线HGOAOB于点CD,若∠HOG=80°,则∠CPD=___________

【答案】100°

【解析】

要求∠CPD的度数,要在△CPD中进行,根据轴对称的性质和等腰三角形的性质找出与∠CPD的关系,利用已知可得∠AOB=40°可求出∠CPD

解:连接OP

P关于OAOB的对称点是HG
OA垂直平分PHROB垂直平分PGT
CP=CHDG=DP
∴∠PCD=2CHP,∠PDC=2DGP
∵∠PRC=PTD=90°,
∴在四边形OTPR中,
∴∠RPT+AOB=180°,
∵∠POC=COH,∠POD=DOG,∠HOG=80°,
∴∠AOB=40°
∴∠RPT=180°-40°=140°
∴∠CHP+PGD=40°,
∴∠PCD+PDC=80°
∴∠CPD=180°-80°=100°.
故答案为100°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网