题目内容
【题目】设是边长为的正三角形内的一点,到三边的距离分别为.若以为边可以组成三角形,则应满足的条件为()
A.B.C.D.
【答案】B
【解析】
连接AP,BP,CP,先求出等边三角形的高h,然后再利用S△ABC=S△APC+S△APB+S△BPC,再找出x,y,z与h的关系,最后运用三角形三边关系即可解答.
解:设等边三角形的高h
∵等边三角形的边长为a
∴该等边三角形的高h=
如图:连接AP、BP、CP,设PE=x,PF=y,PQ=z
∵S△ABC=S△APC+S△APB+S△BPC,
∴
又∵△ABC为等边三角形,
∴AB=BC=AC,
∴,即x+y+z=h,
∵以x,y,z为边可以组成三角形
∴x+y>z,
∴2z<h,即z<
又∵x≤y≤z,
∴z≥
∴
故选B.
【题目】为引领学生感受诗词之美,某校团委组织了一次全校800名学生参加的“中国诗词大赛”,赛后发现有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 5 | 0.05 |
60≤x<70 | 15 | 0.15 |
70≤x<80 | 20 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 25 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;并补全频数分布直方图;
(2)这100名学生成绩的中位数会落在分数段;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的800名学生中成绩“优”等的约有多少人?
【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.
a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部门成绩如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙两部门成绩的平均数、方差、中位数如下:
平均数 | 方差 | 中位数 | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年该单位参赛员工进入复赛的出线成绩如下:
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出线成绩(百分制) | 79 | 81 | 80 | 81 | 82 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)可以推断出选择 部门参赛更好,理由为 ;
(3)预估(2)中部门今年参赛进入复赛的人数为 .