题目内容

【题目】如图,BD为□ABCD的对角线,按要求完成下列各题.

(1)用直尺和圆规作出对角线BD的垂直平分线交AD于点E,交BC于点F,垂足为O.(保留作图痕迹,不要求写作法)

(2)在(1)的基础上,连接BE和DF.求证:四边形BFDE是菱形.

【答案】(1)作图见解析;

(2)证明见解析.

【解析】试题分析:(1)、根据线段中垂线的作法作出中垂线,得出答案;(2)、根据平行四边形的性质得出△DOE和△BOF全等,从而根据对角线互相平分的四边形为平行四边形得出四边形BFDE为平行四边形,然后结合对角线互相垂直得出菱形.

试题解析:(1)、作图

(2)在□ABCD中,AD∥BC ∴∠ADB=CBD 又∵ EF垂直平分BD

BO=DO EOD=FOB=90° ∴△DOE≌△BOF (ASA) EO=FO

四边形BFDE 是平行四边形 又∵ EFBD □BFDE为菱形

练习册系列答案
相关题目

【题目】(本小题满分10分)

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4

5

6


1

0

1

1

探究二:

7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表中)


7

8
span>

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)

其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网