ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿[ÎÊÌâÇé¾³]
ÎÒÃÇÖªµÀÊýÖáÉϵÄÁ½µãA¡¢BµÄ¾àÀë|AB|£½|xA£xB|£¬ÄÇôÈç¹ûÒÑ֪ƽÃæÉÏÁ½µãP1(x1£¬y1)£¬P2(x2£¬y2)£¬ÈçºÎÇóP1£¬P2µÄ¾àÀëd(P1P2)ÄØ£¿
ÏÂÃæÎÒÃǾÍÀ´Ñо¿Õâ¸öÎÊÌ⣮
ÎÊÌâ Ò»°ãµØ£¬ÒÑ֪ƽÃæÉÏÁ½µãP1(x1£¬y1)£¬P2(x2£¬y2)£¬ÈçºÎÇóµãP1ºÍP2µÄ¾àÀ룿
´ð:¡¡µ±x1¡Ùx2£¬y1£½y2ʱ£¬|P1P2|£½|x2£x1|£»
µ±x1£½x2£¬y1¡Ùy2ʱ£¬|P1P2|£½|y2£y1|£»
µ±x1¡Ùx2£¬y1¡Ùy2ʱ£¬Èçͼ£¬
ÔÚRt¡÷P1QP2ÖУ¬Óɹ´¹É¶¨ÀíÖª£¬
|P1P2|2£½|P1Q|2£«|QP2|2£¬ËùÒÔd(P1£¬P2)£½|P1P2|£½.
¹éÄÉ:Á½µãP1(x1£¬y1)£¬P2(x2£¬y2)¼äµÄ¾àÀ빫ʽd(P1£¬P2)£½|P1P2|£½.
½â¾öÎÊÌ⣺
£¨1£©ÒÑÖªA£¨2£¬-4£©£¬B£¨-2£¬3£©£¬Çód£¨A,B£©
£¨2£©ÒÑÖªµãA(1,2)£¬B(3,4)£¬C(5,0)£¬ÇóÖ¤£º¡÷ABCÊǵÈÑüÈý½ÇÐΣ®
¡¾´ð°¸¡¿£¨1£©£»£¨2£©¼ûÏê½â£®
¡¾½âÎö¡¿
£¨1£©Ö±½ÓÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËã¼´¿É£»
£¨2£©·Ö±ðÇó³öd(A£¬B)£¬d(A£¬C)£¬d(C£¬B)£¬ÔÙ¸ù¾ÝµÈÑüÈý½ÇÐεĶ¨Òå¼´¿ÉÖ¤Ã÷£®
½âÎö£º£¨1£©£¬
¡à£»
£¨2£©Ö¤Ã÷:¡¡¡ß A(1,2)£¬B(3,4)£¬C(5,0)£¬
¡àd(A£¬B)£½£¬
d(A£¬C)£½£½£¬
d(C£¬B)£½£½£¬
¡à|AC|£½|BC|.
ÓÖ¡ßµãA£¬B£¬C²»¹²Ïߣ¬
¡à¡÷ABCÊǵÈÑüÈý½ÇÐΣ®