题目内容
【题目】已知:如图,点是线段上一定点,,、两点分别从、出发以、的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)
若,当点、运动了,此时________,________;(直接填空)
当点、运动了,求的值.
若点、运动时,总有,则________(填空)
在的条件下,是直线上一点,且,求的值.
【答案】(1),;(2);(3);(4)或.
【解析】
(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;
(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;
(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM=AB;
(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.
(1)根据题意知,CM=2cm,BD=4cm.
∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.
故答案为:2,4;
(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.
∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;
(3)根据C、D的运动速度知:BD=2MC.
∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.
∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB=4.
故答案为:4;
(4)①当点N在线段AB上时,如图1.
∵AN﹣BN=MN.
又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴==;
②当点N在线段AB的延长线上时,如图2.
∵AN﹣BN=MN.
又∵AN﹣BN=AB,∴MN=AB=12,∴==1.
综上所述:=或1.