题目内容
【题目】课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2 .
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:
(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
【答案】
(1)
解:由已知可得:AD= ,
则S=1× m2
(2)
解:设AB=xm,则AD=3﹣ m,
∵ ,
∴ ,
设窗户面积为S,由已知得:
,
当x= m时,且x= m在 的范围内, ,
∴与课本中的例题比较,现在窗户透光面积的最大值变大
【解析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.
练习册系列答案
相关题目