题目内容
【题目】如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、En,分别记△BCE1、△BCE2、△BCE3…△BCEn的面积为S1、S2、S3、…Sn.则Sn= S△ABC(用含n的代数式表示).
【答案】.
【解析】
试题解析:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=BCCE1=BC×AC=×ACBC=S△ABC;
∴在△ACB中,D2为其重心,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=××ACBC=S△ABC,
∴D3E3=BC,CE2=AC,S3=S△ABC…;
∴Sn=S△ABC.
练习册系列答案
相关题目