题目内容
【题目】如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.
【答案】
【解析】
首先过B作x轴的垂线,设垂足为M,由已知易求得OA=4,在Rt△ABM中,已知∠OAB的度数及AB的长,即可求出AM、BM的长,进而可得到BC、CD的长,再连接OD,证△ODE∽△AEF,通过得到的比例线段,即可得出y与x的函数关系式.
解:过B作BM⊥x轴于M.
在Rt△ABM中,
∵AB=3,∠BAM=45°,
∴AM=BM=,
∵BD=OA= ,
,
∴BC=OA﹣AM=4﹣,CD=BC﹣BD=,
∴D(,),
.
连接OD,则点D在∠COA的平分线上,所以∠DOE=∠COD=45°.
又∵在梯形DOAB中,∠BAO=45°,
∴由三角形外角定理得:∠ODE=∠DEA﹣45°,又∠AEF=∠DEA﹣45°,
∴∠ODE
=∠AEF,
∴△ODE∽△AEF,
即
∴y与x的解析式为:.
故答案为:.
【题目】一家商店经营一种玩具,进价为每件50元,调查市场发现日销售量y(件)是关于售价x(元/件)的一次函数,相关数据如表,商店每天的总支出是600元.
售价(元/件) | 50 | 55 | 60 | 65 |
日销售量y/件 | 80 | 70 | 60 | 50 |
(1)直接写出y与x之间的函数关系式.(不要求写出自变量x的取值范围)
(2)商店在“五一”这天尽可能优惠顾客,正好收支平衡(收入=支出),问当天玩具的售价为多少元/件.
(3)商店最早需要多少天,纯利可以突破万元,玩具的售价应定为多少元/件?(每天纯利=每天的销售额﹣成本﹣每天的支出)
【题目】为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示:
时间段 (小时/周) | 小丽抽样 人数 | 小杰抽样 人数 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每组可含最低值,不含最高值)
(1)你认为哪位同学抽取的样本不合理?请说明理由;
(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;
(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?