题目内容
【题目】在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为( )
A. 或B. C. 2D. 2或10
【答案】A
【解析】
直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.
解:如图:分两种情况:
(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,
∴AB=2AP1=4,
∴OB=OA-AB=6-4=2,
在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;
(2)同理可求得AD=4,OD=OA+AD=10,
在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;
故选:A.
练习册系列答案
相关题目