题目内容
【题目】如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O的切线.
(1)求证:∠CDE= ∠BAC;
(2)若AB=3BD,CE=4,求⊙O的半径.
【答案】(1)见解析;(2)14.
【解析】
(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;
(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.
(1)如图,连接OD,AD,
∵AC是直径,
∴∠ADC=90°,-
∴AD⊥BC,
∵AB=AC,
∴∠CAD=∠BAD=∠BAC,
∵DE是⊙O的切线;
∴OD⊥DE
∴∠ODE=90°
∴∠ADC=∠ODE
∴∠CDE=∠ADO
∵OA=OD,
∴∠CAD=∠ADO,
∴∠CDE=∠CAD,
∠CAD=∠BAC,
∴∠CDE=∠BAC.
(2)解:∵AB=AC,AD⊥BC,
∴BD=CD,
∵AB=3BD,
∴AC=3DC,
设DC=x,则AC=3x,
∴AD=
∵∠CDE=∠CAD,∠DEC=∠AED,
∴△CDE∽△DAE,
∴,
即
∴DE=,x=,
∴AC=3x=28,
∴⊙O的半径为14.
练习册系列答案
相关题目
【题目】某儿童游乐园推出两种门票收费方式:
方式一:购买会员卡,每张会员卡费用是元,凭会员卡可免费进园次,免费次数用完以后,每次进园凭会员卡只需元;
方式二:不购买会员卡,每次进园是元(两种方式每次进园均指单人)设进园次数为( 为非负整数) .
(1)根据题意,填写下表:
进园次数(次) | ··· | |||
方式一收费(元) | ··· | |||
方式二收费(元) | ··· |
(2)设方式一收费元,方式二收费元,分别写出关于的函数关系式;;
(3)当时,哪种进园方式花费少?请说明理由.