题目内容
【题目】在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为 个单位长度/秒,则2017秒时,点P的坐标是( )
A.(2017,0)
B.(2017, )
C.(2017,﹣ )
D.(2016,0)
【答案】B
【解析】解:设第n秒运动到Pn(n为自然数)点, 观察,发现规律:P1(1, ),P2(2,0),P3(3,﹣ ),P4(4,0),P5(5, ),…,
∴P4n+1(4n+1, ),P4n+2(4n+2,0),P4n+3(4n+3,﹣ ),P4n+4(4n+4,0).
∵2017=4×504+1,
∴P2017为(2017, ).
故选B.
设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(4n+1, ),P4n+2(4n+2,0),P4n+3(4n+3,﹣ ),P4n+4(4n+4,0)”,依此规律即可得出结论.
练习册系列答案
相关题目