题目内容
【题目】如图,矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上F处,求tan∠AFE.
【答案】
【解析】根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.
解:根据折叠的性质,∠EFC=∠EDC=90°,
即∠AFE+∠BFC=90°.
又Rt△BCF中,∠BCF+∠BFC=90°,
∴∠AFE=∠BCF.
在Rt△BFC中,根据折叠的性质,有CF=CD,BC=8,
CF=CD=10,由勾股定理易得BF=6,则tan∠BCF=,
∴tan∠AFE=tan∠BCF=
练习册系列答案
相关题目