题目内容

【题目】如图,矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上F处,求tan∠AFE.

【答案】

【解析】根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.

解:根据折叠的性质,∠EFC=∠EDC=90°,

∠AFE+∠BFC=90°.

Rt△BCF中,∠BCF+∠BFC=90°,

∴∠AFE=∠BCF.

Rt△BFC中,根据折叠的性质,有CF=CD,BC=8,

CF=CD=10,由勾股定理易得BF=6,则tan∠BCF=

∴tan∠AFE=tan∠BCF=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网