题目内容
【题目】已知二次函数的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).
(1)求二次函数的解析式,并写出顶点D的坐标;
(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.
【答案】(1),D(,);(2)<x<.
【解析】
试题分析:(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;
(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.
试题解析:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入得:b=﹣1,∴抛物线的解析式为,∴,∴抛物线的顶点坐标D(,).
(2)二次函数的图形沿x轴向左平移个单位长度得:.令y=0得:,解得:,.∵a>0,∴当y<0时,x的取值范围是<x<.
练习册系列答案
相关题目