题目内容
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 97×99 |
分析:(1)根据上述的式子总结出规律为:
=
-
,按照此规律把所求式子的每一项拆项化简,抵消合并即可求出值;
(2)根据上述的式子总结出规律为:
=
(
-
),然后按照此规律把所求式子的每一项拆项化简,抵消合并即可求出值;
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)根据上述的式子总结出规律为:
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:(1)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
(2)
+
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
=
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
=1-
| 1 |
| 100 |
=
| 99 |
| 100 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 97×99 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 97 |
| 1 |
| 99 |
=
| 1 |
| 2 |
| 1 |
| 99 |
=
| 49 |
| 99 |
点评:此题有理数的混合运算,是一道规律型题,解答此类题常常认真观察已知的等式,进行分析,归纳总结得到一般性的规律来解决问题.根据题意归纳出一般性的规律
=
-
是解本题的关键.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目