题目内容
【题目】某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:
该教育科技公司计划购进两种多媒体共50套,共需资金132万元 .
(1)该教育科技公司计划购进A,B两种多媒体各多少套?
(2)经过市场调查后,该商店决定在原计划50套多媒体的基础上,减少A的购进数量,增加B 的购进数量,已知B种多媒体增加的数量是A种多媒体减少数量的1.5倍,全部销售后可以获取毛利润21万元,问实际购进A种多媒体多少套?
【答案】(1)A种多媒体各20套,B种多媒体各30套;(2)实际购进A种多媒体10套
【解析】
(1)首先设该教育科技公司计划购进A,B两种多媒体分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;
(2)首先设A种多媒体购进数量减少a套,则B种多媒体购进数量增加1.5a套,根据题意即可列方程0.3(20-a)+0.4(30+1.5a)=21,解此方程即可求得答案.
(1)设该商场计划购进A,B两种多媒体分别为x套,y套,根据题意得
,
解得:,
答:该教育科技公司计划购进A,B两种多媒体分别为20套,30套;
(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,
(3.3-3)(20-a)+(2.8-2.4)(30+1.5a)=21,
解得:a=10,
∴20-a=20-10=10(套)
答:实际购进A种多媒体10套.
【题目】某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.